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Abstract

This is the _rst of a two!part paper concerned with both structural and fabrication process design of a
closed!end laminated composite cylinder intended for service in deep sea environment[ The cylinder is made
of many di}erent orthotropic layers and is loaded by uniform\ axisymmetric surface tractions[ In addition\
piecewise uniform eigenstrains and residual stresses may be caused in the layers during fabrication\ by _ber
prestress for waviness reduction and by piecewise uniform changes in temperature[ The overall goal is to
assure e.cient use of the composite structure under a prescribed hydrostatic pressure\ and to select _ber
prestress distribution such that the total stresses in the plies do not exceed certain strength magnitudes[

Mechanical and residual stresses in the layers are evaluated with mechanical and transformation in~uence
functions[ For the proportional loading applied by a hydrostatic pressure\ a procedure is outlined for design
of several layups such that the cylinder wall experiences an isotropic in!plane strain and\ therefore\ all layers
support the same compressive normal stresses\ regardless of _ber orientation[ The results are applied in
design and analysis stress _elds in a speci_c structure[ Fabrication process design is discussed in the second
part of the paper "Srinivas et al[\ 0888\ Int[ J[ Solids Structures\ 25\ 2834Ð2865#[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

One of the potential applications of composite materials is in structures subjected primarily to
compressive loads\ such as submersibles[ The incentive is the relatively high axial compressive
strength that has been found in carefully fabricated thick samples\ e[g[\ 0339 MPa "198 ksi# in
AS3:2490!5 carbon:epoxy system "Daniel and Isahi\ 0883#^ even the more frequently reported
magnitude of about 699 MPa for this system is attractive[ Cylindrical or spherical shapes are
typically preferred in such applications\ and if the wall thickness to diameter ratios are small\ then\
regardless of actual size\ the structure responds to external hydrostatic compression as a thin!
walled cylinder or sphere\ with nearly uniform distribution of load!induced strains through the
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wall thickness[ However\ signi_cant residual stress gradients can be caused by fabrication and
processing\ for example\ by _ber prestress to reduce _ber waviness[ In superposition with external
loads\ such residual stresses may promote premature failure "Dvorak and Prochazka\ 0885#[

Of major concern in design of submerged structures is\ of course\ support of the external pressure
which causes proportionally changing internal stress magnitudes at di}erent depths[ Under such
loading\ ply layup may be modi_ed to adjust sti}ness distribution in the structure such that all
plies support the same axial compressive stress[ Moreover\ internal eigenstrains may be introduced
into the plies to cause a desirable redistribution of internal stresses^ either during fabrication or by
suitable actuator devices in service[

This is the _rst of a two!part study of mechanical and residual stress and strain _elds in
multi!layer composite cylinders loaded by external pressure and by piecewise uniform eigenstrain
distributions introduced in the layers during fabrication[ Any number of di}erent\ cylindrically
orthotropic elastic layers can be considered[ The goal is to establish a theoretical framework for
evaluation of the relevant _elds in the individual layers of the structure\ to describe minimum
weight laminate layup designs for a speci_c material system\ and to illustrate by examples the
distributions of mechanical\ thermal and residual _elds[ The second part of the study "Srinivas et
al[\ 0888# presents analysis of fabrication procedures involving selected distributions of _ber
prestress\ and also describes procedures for determining prestress magnitudes in individual plies
that create prescribed residual stress _elds in the cylinder wall[ Buckling analysis is not considered
here\ it can be found together with many related references in Kardomateas and Philobos "0884#
and Kardomateas "0886#[

In Sections 1Ð3\ we derive local _elds and overall response of the layered cylindrical structure
under the external pressure and local eigenstrains[ Section 4 presents derivation of the trans!
formation in~uence functions "Dvorak and Benveniste\ 0881^ Dvorak\ 0881# while Section 5
describes certain laminate layups for minimum weight design with a speci_c material system[
Applications are summarized in Section 6[

1[ The layered composite cylinder

A long cylindrical structure of circular cross!section consists of N concentric cylindrical layers\
all located in the volume V with surface S[ A cylindrical ruz system of coordinates is de_ned
according to Fig[ 0\ a Cartesian system Xi\ i � 0\ 1\ 2\ is also introduced for future use[ The inner
and outer boundaries of the structure are denoted as Sa at r � a\ and Sb at r � b\ respectively\
a ³ b^ and the end faces as Sz at z � 9\ L[ Similarly\ for each layer " j#\ the inner and outer radii
are denoted as r � aj and r � bj^ aj ³ bj[ It follows that bj � aj¦0 for j � 0\ 1\ [ [ [ \ N−0\ and that
a0 � a\ bn � b[

In an actual structure\ each layer " j# represents a unidirectional _brous ply where the _bers
contain some constant angle cj with the coordinate direction z[ However\ homogenized sub!
laminates consisting of many _brous plies of a certain layup and stacking sequence may also be
regarded as layers in the elastic analysis of mechanical load e}ects[ To allow for these and
other possible choices\ the elastic symmetry of the layer is assumed to correspond to cylindrical
orthotropy[

Attention will be limited to axisymmetric loading of the cylinder\ such as external and internal
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Fig[ 0[ Geometry of the layered composite cylinder[

radial pressure\ and axial normal pressure[ Moreover\ we admit axisymmetric eigenstrains in the
layers^ these may be caused by many di}erent processes\ for example\ by thermal changes\ moisture
absorption\ inelastic deformation of the matrix during curing or under load\ and by prestressing
of the _bers in fabrication[ Regardless of their origin\ the eigenstrains are assumed to be uniform
in the volume of each layer[ Since the structure is also axisymmetric\ it is su.cient to write the
elastic constitutive relations for the material in each layer " j# only for the following strain\ stress\
and eigenstrain components\
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Here\ the vector mj denotes the uniform eigenstrains in the layer\ and the compliance matrix of the
cylindrically orthotropic material is written in terms of the elastic constants\ de_ned in the ruz
coordinates\ as
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The reciprocal of "0# is
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with Lj satisfying LjM j � I\ a "2×2# identity matrix[ In terms of Young|s moduli and Poisson|s
ratios of the layer material\ the coe.cients of Lj evaluate as
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where Do � ð0−"nrunur¦nrznzr¦nuznzu#−"nrunuznzr¦nurnzunrz#Ł\ in terms of the elastic constants in
"1#\ with the subscript " j# omitted[

Speci_c magnitudes of the above elastic constants can be derived by identifying the cylinder wall
with a laminated plate of the same layup[ The plate moduli are found from the classical laminated
plate theory and are then transformed into cylindrical coordinates[ This has been described in
detail by Sun and Li "0877# and Luo and Sun "0880#[

2[ Fields in a single layer

Consider any single cylindrically orthotropic layer " j# that has been separated from the com!
posite cylinder and constrained by prescribed uniform surface displacements\
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In addition\ certain uniform eigenstrains mj � ðmj
rr mj

uu mj
zzŁT are prescribed in the layer[ Our

objective is to _nd the local strain and stress _elds\ and to relate the applied displacements and
eigenstrains to the resulting tractions[

The kinematic relations for total strains oj and displacements uj in the layer are\
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The stresses then follow from eqn "2# and must satisfy the equations of equilibrium in cylindrical
coordinates\ which for zero body forces reduce to the single equation\
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the other equations are satis_ed identically[ Substituting "7# into "09#\ we _nd\
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where k1
j � Lj

uu:L
j
rr[ In the particular case of a cylindrically orthotropic layer\ it follows from eqn

"2# that k1
j � Eu"0−nrznzr#:ðEr"0−nuznzu#Ł[

The general solution of "00# can be found in the form\
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where jj � r:bj\ bj is the outer radius of the layer " j#\ and um
r is a particular integral entirely

dependent on the applied eigenstrains and the constant axial strain oj
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For kj � 0\ the particular integral becomes\
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The integration constants in "01# are found from the boundary conditions "7#[ For kj � 0\ with
cj � aj:bj\
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The total strains are now found from "8# and the local stresses from "2#\ in terms of the loadings\
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The average values of the stress components through the thickness of the layer are de_ned as
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for p � r and p � u^ "bj−aj# is the thickness and Vj � p"b1
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the j!th layer[ Moreover\ we de_ne at the boundary of the layer
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where the coe.cients kj and qj are evaluated from "08#Ð"10# and "15#\ "16# for kj � 0\ or from
"11#Ð"13# and "15#\ "16# for kj � 0[ Results appear in the Appendix[

Applying the averages "15# to the stress _elds "08#Ð"10# or "11#Ð"13#\ we _nd\
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Also\ we de_ne eigenstresses lj as the average stresses caused in a fully constrained layer\ uj � 9\
by the uniform eigenstrains mj\

l j � w jm j "29#

This is not necessarily identical with the de_nition l � −Lm\ usually adopted in the Cartesian
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system\ where the stresses caused by uniform eigenstrains in a fully constrained homogeneous
volume are also known[ The coe.cients of wj also appear in the Appendix[

3[ Overall response of the cylindrical structure

We now proceed to _nd expressions for the local stresses in the layers and for the overall
response of the cylindrical composite structure under loads consisting of an external pressure pb at
the external boundary r � b and z � 9\ L\ certain pressure pa at the internal boundary r � a\ and
uniform eigenstrains mp prescribed in selected layers j � p[ In general\ the tractions at the respective
surfaces are de_ned in analogy with "16# as\
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where i � 0\ 1\ [ [ [ \ N\ and the last equality re~ects force equilibrium in the axial direction[ Two
types of eigenstrains are admitted in the layers\ _xed eigenstrains m¹

i and variable eigenstrains mj

"i\ j � 0\ 1\ [ [ [ \ N# that can be adjusted in fabrication or service in order to achieve a certain
optimum distribution of internal stresses under the external loads "20#[ In any case\ the eigenstrains
are _rst converted into internal tractions by referring to "17# and letting all surface displacements
vanish[ These tractions are then applied to the structure\ with reversed signs\ as internal line
tractions on layer interfaces and at the external boundaries of the surface layers^ their evaluation
is\
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As in "20#2\ the total axial tractions acting on the structure are\
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The solution is sought for the loads "20# and "21#\ in terms of the radial displacements at the
layer interfaces^ once these are known\ the internal stresses in the layers can be found from "08#Ð
"13#[ The interface radial displacement components must satisfy\

u0 � ua at r � a\ ui � ui
a � ui−0

b at r � ai � bi−0\ uN¦0 � uN
b at r � b "23#

and the axial displacements the condition ui
z � uz[ The total tractions caused on the interfaces by

the mechanical loads "20# and by the eigenstrain!generated tractions "21# must be in equilibrium\
so that\

P0 � Pa at r � a\ Pi � Pi
a � Pi−0

b at r � ai � bi−0\ PN¦0 � PN
b at r � b "24#

Subject to these conditions\ and to the equilibrium requirements "20#2 and "22#\ the interface
displacements are found from\
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where J denotes the set of layers which contain the adjustable eigenstrains mj[
The sti}ness matrix K of the cylindrical structure can be written in terms of the layer sti}ness

coe.cients ki
mn de_ned in "17# and listed in the Appendix\
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Note that K is neither symmetric nor banded[ On the other hand\ if K is partitioned as
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K10"0×"N¦0## K11"0×0# % "28#

the matrix K00 is symmetric\ positive de_nite\ tridiagonal and banded[
The solution of "25# or "26# is thus sought as a superposition of two problems denoted as "I#

and "II#[ First\ a plane strain problem "uz � 9# is solved under the prescribed tractions Pa and Pb

in "20#\ and for the eigenstrain!generated tractions "21#[ Then\ the cylinder structure is freed of
any overall constraints and subjected to the applied axial forces\ and to such forces that remove
the axial reactions found in the plane strain solution[ Thus "26# is rewritten as\
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where we de_ned the ""N¦1#×0# matrices as\
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FÞr �

F

G

G

G

G

G

g

G

G

G

G

G

f

Pa¦FÞ0
a

FÞ1
a¦FÞ0

b

*

FÞj
a¦FÞj−0

b

FÞj¦0
a ¦FÞj

b

*

FÞN
a ¦FÞN−0

b

FÞN
b ¦Pb

RÞz

J

G

G

G

G

G

h

G

G

G

G

G

j

"30#

FÞz �"9 9 [ [ [ 9 9 [ [ [ 9 9 −RÞz¦FÞz#T "31#

Pz �"9 9 [ [ [ 9 9 [ [ [ 9 9 Pz#T "32#

F r
j �"9 9 [ [ [ 9 9 [ [ [ 9 9 Rj

z#T "33#

F z
j �"9 9 [ [ [ 9 9 [ [ [ 9 9 −Rj

z¦F j
z#T "34#

In the _rst\ plane strain part "I# of the solution\ the structure is loaded by FÞr and SFÞr
j in "39#[

The two loads are applied separately and the resulting radial displacements are then added as
u I � u¹ I¦u I

j[ The _rst system to be solved is written for the "N¦0# radial displacements\

K00u¹ I � FÞr and K00u I
j � FÞr

j j $ J "35#

where J denotes the set of layers with nonzero eigenstrains\ and where only the _rst "N¦0#
coe.cients of FÞr and F r

j are actually used[ The as yet unknown axial reactions then are\

RÞz � K10u¹ I Rj
z � K10u I

j j $ J "36#

and the components FÞz and Fz
j follow directly from "21#[ This provides complete information about

the axial loading vectors FÞz and SF j
z in "39#^ Pz is the prescribed load[

In the second part "II# of the solution\ the structure is loaded only by the load vector that
represents the total axial force\

R � FÞz¦Pz¦s
j$J

Fz
j "37#

To evaluate the local radial displacements uII at the layer interfaces and the axial displacement uII
z \

we _rst _nd u � u> for a certain axial displacement\ say for u>z � 0[ According to "39#\ this follows
from the relation\

K00u> � −K01u>z "38#

and the axial reaction corresponding to the selected u>z is\

R> � K10u>¦K11u>z �"K11−K10K−0
00 K01#u>z "49#

Equation "39# indicates that the total axial force R in "37# has the single nonzero component\
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R � −Rz¦FÞz¦Pz−Rj
z¦s

j$J

Fz
j "40#

Using this value to replace R> in "49#\ we _nd the actual axial displacement for the second part
"II# of the superposition[ Since we selected uI

z � 9\ the total uz in "39# is

uz � uII
z �"K11−K10K−0

00 K01#−0 0−Rz¦FÞz¦Pz−Rj
z¦s

j$J

Fz
j1 "41#

where the forces are evaluated from "21# and "36#[ Then\ a substitution into "38# provides the
radial displacements due to the actual axial force R as\

u II � −K−0
00 K01"K11−K10K−0

00 K01#−0 0−Rz¦FÞz¦Pz−Rj
z¦s

j$J

Fz
j1 "42#

Finally\ we recall from "35# the radial displacements in the plane strain problem "I#

u I � u¹ I¦u I
j � K−0

00 "FÞr¦FÞr
j# "43#

and invoke the superposition u � uI¦uII to complete the solution of "39#[ Note that the solution
calls only for the evaluation of K−0

00 \ which is asymmetric and positive de_nite matrix\ so that the
inverse can be found using the Choleski decomposition[

4[ Transformation in~uence functions

We now proceed to derive certain in~uence functions that evaluate the e}ect of unit uniform
eigenstrains introduced in one layer j � p on the stress _elds in all layers[ In this derivation\ all
other layers "i � p# are assumed to be free of initial strains[

Suppose that a single layer " j $ J# is subjected to a uniform eigenstrain m � "m j
rr\ mj

uu\ mj
zz# of unit

magnitude[ As pointed out in Section 3\ the e}ect of this eigenstrain on the layered cylindrical
structure can be represented by application of interface tractions F j given by "21#1\ as r � aj and
r � bj[ The displacements u at all interfaces between the layers then follow from "26# for P � FÞ� 9

as\

Ku � F j "44#

The form of Fj required in "25# or "26# is written as\

F j � −Q jm j "45#

where the coe.cients of Q j are taken from "21# and arranged as follows\
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Q j �

F

G

G

G

G

G

g

G

G

G

G

G

f

9 9 9

9 9 9

* * *

q00 q01 q02

q10 q11 q12

* * *

9 9 9

* * *

q20 q21 q22

J

G

G

G

G

G

h

G

G

G

G

G

j

j!th position

j¦0!th position
"46#

Next\ we extract the "2×0# displacement vector u¹ i � "ui
a\ ui

b\ ui
z# for a speci_c layer i � 0\ 1\ \ [ [ [ \ N

from the ""N¦1#×0# vector u of all radial displacements in the structure\

u¹ i � 8
ui

a

ui
b

ui
z
9�

K

H

H

H

H

H

k

9 9 9 [ [ [ 9 0 9 9 [ [ [ 9

9 9 9 [ [ [ 9 9 0 9 [ [ [ 9

9 9 9 [ [ [ 9 9 9 9 [ [ [ 0
c c

i!th position i¦0!th position

L

H

H

H

H

H

l

u � Hiu[

"47#

Thus we _nd the solution of "44# in the form\

u¹ i � −HiK−0Q jm j\ "48#

which evaluates the displacements caused at the interfaces and in the axial direction of any layer
"i# by the uniform eigenstrains applied in the layer " j#^ it includes the self!induced displacements
in the layer "i � j#[

Of course\ our goal is to _nd the local stresses si caused by the eigenstrain mj[ This is accomplished
by substituting from "48# into "18#[ Rewriting "18# as

ðs jŁ � s ju¹ j¦w jm j for i � j

ðs iŁ � s iu¹ i for i � j "59#

and taking u¹ i from "48# and mj from "29#\ we _nd\

ðs iŁ � ðdijI2−s iHiK−0Q j"w j#−0Łl j � Fijl
j "50#

where i\ j � 0\ 1\ [ [ [ [ \ N\ dij is the Kronecker symbol but the summation rule is not observed\ I2 is
a "2×2# unit matrix\ and wj is de_ned in "18#[ One can show that det =wj= � 9[

Another useful form relates to the layer eigenstrains and local stresses as\

ðs iŁ � Dijm
j Dij � Fijw j i\ j � 0\ 1\ [ [ [ \ N "51#
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The Dij and Fij are the eigenstrain and eigenstress in~uence functions\ that evaluate residual
stresses in the layered cylinder due to unit transformations induced in layer " j#\ analogous to those
introduced in Dvorak and Benveniste "0881# and Dvorak "0881#[

We note that "50# can be readily used for evaluation of layer stresses caused by known eigen!
strains\ such as thermal strains or moisture!induced swelling[ In particular\ the linear thermal
expansion coe.cients of the layer material are multiplied by the temperature di}erence T−Tc

between the current and curing temperature\ and identi_ed with the layer eigenstrains in "0#[ These
thermally!induced layer eigenstrains are regarded as _xed\ denoted by m¹

i\ used in "21#0 to _nd the
corresponding internal tractions FÞ that appear in "25#[ The moisture!induced eigenstrains are
treated in a similar way\ but with expansion coe.cients and moisture content data[ The average
layer stresses are then given by "50# and "51#[

5[ Design of laminate layup

Stresses generated by the external hydrostatic pressure are often of primary concern in design
of submerged structures[ In the thin!walled "D:t × 19# composite cylinder of diameter D and wall
thickness t\ the average stresses in the cylinder wall in the axial\ hoop and radial directions\ Fig[ 0\
evaluate as\

sz � p 0
D
3t1 su � p 0

D
1t1� 1sz 9 × sr × p "52#

where p ³ 9[1sz ³ 9 denotes the applied external pressure[ The radial compressive stress sr is small^
as shown in Section 6 below\ it is much smaller than the transverse compressive strength of typical
polymer matrix plies and thus of no concern in laminate design[ However\ the through!the!
thickness compression does cause "tensile# in!plane strains in a ply\

oa � −0
nA

EA1 sr ob � −0
nT

ET1 sr og � 0
0
ET1 sr "53#

where xa is parallel to the _ber direction\ xb is in the plane of the ply\ and xg is perpendicular to
the xaxb!plane^ EA\ ET\ nA\ nT are axial and transverse Young?s moduli and Poisson?s ratios of the
ply[ A reasonably accurate approximation of the axial _ber stress is sf

a � Ef
Aoa � −"nAEf

A:EA#sr[
This is tension\ hence it provides a small bene_t in the present context[ Typical values in epoxy!
matrix systems are sf

a ¹ 9[4sr[
The principal design goal is to assure that the compressive stresses in all plies of the laminate

are well within certain allowable limits[ The axial elastic modulus of a composite ply is typically
much larger than the transverse modulus\ hence the external load is supported primarily by the
axial compressive stresses in the plies[ For best use of the composite material and minimum weight
of the structure\ the laminate layup should be designed such that the axial compressive stresses in
all plies are of the same magnitude[ This requirement is met by laminate layups that respond to
the above proportional biaxial normal stresses by isotropic in!plane deformation[ Symmetric
laminates with orthotropic in!plane material symmetry are well suited for this purpose[
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The design problem is posed as follows] For the above stress ratio sz � 1su\ identify laminate
layups that respond by isotropic in!plane strains\ oz � ou[ The _rst task is to determine conditions
for laminate sti}ness coe.cients that guarantee the desired response[ Then\ corresponding laminate
layups need to be found for speci_c material systems[

Since the wall curvature is small\ the in!plane properties of the laminates can be estimated by
the classical laminated plate theory for in!plane loading\ as in Section 1[ Therefore\ for greater
clarity\ the above design problem can be solved for an element of a symmetric\ orthotropic
laminated plate under in!plane normal stresses[ As is customary in such situations\ we utilize
Cartesian coordinates xi\ i � 0\ 1\ 2 and identify the ply with the _bers parallel to the x0!direction
as the 9> ply[ In the context of the cylindrical coordinates of Fig[ 0\ x0 is parallel to the z!direction\
x1 to the u!direction\ and x2 to the r!direction[ Accordingly\ the stresses in "52# are relabeled as\

sz � s0 � p 0
D
3t1 su � s1 � p 0

D
1t1� 1sz "54#

Using standard contracted notation\ the constitutive relations of the orthotropic laminate under
plane stress can be written in the form "Christensen\ 0868#\

&
s0

s1

s5
'� &

L00 L01 9

L11 9

sym L55
' &

o0

o1

o5
' "55#

In the absence of in!plane shear stress\ this can be reduced to two equations for the strains\ with
the solution

o0 �
"L11s0−L01s1#

"L00L11−L1
01#

o1 �
−"L01s0−L00s1#

"L00L11−L1
01#

"56#

Substitute now the above prescribed stresses and desired strains\

s1 � 1s0 o1 � o0 "57#

and thus obtain\

s0"L11−1L01#

"L00L11−L1
01#

�
s0"1L00−L01#

"L00L11−L1
01#

"58#

which suggests that the sti}ness coe.cients of the laminate must satisfy the condition\

L11−1L01¦L01−1L00 � 9 c 1L00−L11¦L01 � 9 "69#

Next\ we proceed to identify laminate layups that satisfy "69# in a speci_c material system[
Noting that a layup is de_ned both by layer orientation and by the volume fraction "ti:t# of layers
of a particular orientation\ we derive expressions for the volume fractions of layers needed to
satisfy the said condition for certain standard layer orientations[
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First to be considered is the "9c9
:89c89

#s laminate[ The objective is to evaluate the volume fractions
c9¦c89 � 0[ Recall that the laminate "2×2# in!plane sti}ness "55# is\

L � c9L9¦c89L89

&
L00 L01 9

L11 9

sym L55
'� c9 &

L9
00 L9

01 9

L9
11 9

sym L9
55
'¦c89 &

L9
11 L9

01 9

L9
00 9

sym L9
55
' "60#

where L9
ij are sti}ness coe.cients of the 9> ply[ Substituting this into 1L00−L11¦L01 � 9\ one _nds

that\

"1c9−c89#L9
00−"c9−1c89#L9

11¦L9
01 � 9 "61#

Since c89 � 0−c9\ it follows that\

2c9"L9
00−L9

11#−L9
00¦1L9

11¦L9
01 � 9 c9 �

"L9
00−1L9

11−L9
01#

2"L9
00−L9

11#
"62#

c89 � 0−c9 � 0−
"L9

00−1L9
11−L9

01#

2"L9
00−L9

11#
"63#

For plies made of a chosen composite system with in!plane sti}ness L9\ these ply volume fractions
will assure satisfaction of the condition 1L00−L11¦L01 � 9 in "69#\ for laminate in!plane sti}ness
coe.cients of the "9c9

:89c89
#s laminate[

Examining the conditions 9 ³ c9 ³ 0 and 9 ³ c89 ³ 0\ we _nd from "62# and "63#\

"L9
00−1L9

11−L9
01# ³ 2"L9

00−L9
11#c 1L9

00−L9
11¦L9

01 × 9 "64#

This form is coincidentally similar to "69#^ it is satis_ed in typical polymer matrix systems[
Therefore\ one can conclude that for such typical systems\ the ply volume fractions "63# will satisfy
the requirements 9 ³ c9 ³ 0 and 9 ³ c89 ³ 0[

For example\ in a glass!epoxy system with the ply sti}ness coe.cients\

L9
00 � 26[2 GPa L9

01 � 1[4 GPa L9
11 � 7[4 GPa c9 � 9[195 c89 � 9[683 c89:c9 � 2[74

L00 � 03[2 GPa L11 � 20[9 GPa L11:L00 � 1[05

Similar results are obtained for the AS3:2490!5 carbon!epoxy system\

c89:c9 � 2[04 L11:L00 � 001[7:38[7 � 1[15

Consider next a balanced "9c9
:59c59

:89c89
#s laminate where the ¦59 and −59 plies come in pairs

and the c59 designates the volume fraction of these pairs[ Since three ply volume fractions will be
needed here\ we consider a speci_c composite system\ a variant of the AS3:2490!5\ with the
following ply moduli]

EA � 031 GPa\ ET � 09[2 GPa\ GA � 6[1 GPa\ nA � 9[17
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The ply sti}ness coe.cients "in GPa# in laminate coordinates are found as\

Ply L00 L01 L05 L11 L15 L55

9 031[7 1[7 9 09[3 9 6[1
¦59 10[1 14[0 04[7 76[3 30[4 18[4
−59 10[1 14[0 −04[7 76[3 −30[4 18[4

89 09[3 1[7 9 031[7 9 6[1

The laminate sti}ness coe.cients are found from the formula

Lij � c9L
9
ij¦

c59

1
"L¦59

ij ¦L−59
ij #¦c89L

89
ij "65#

Where the Lij are evaluated using the numerical magnitudes from the above table\ and substituted
in the condition for laminate sti}nesses 1L00−L11¦L01 � 9\ one _nds the relations for ply volume
fractions\

166[84c9−08[84c59−008[14c89 � 9 c9¦c59¦c89 � 0

Solutions can be found as functions of a parameter\ c59\ for example[ The results are\

c9 9[099 9[049 9[199 9[149 9[299
c59 9[790 9[599 9[399 9[199 9[999
c89 9[988 9[149 9[399 9[449 9[699

L00 21[17 25[64 30[19 34[54 49[09
L01 19[51 05[04 00[69 6[14 1[79
L11 74[07 78[54 83[09 87[44 092[90
L55 14[92 19[45 05[09 00[54 6[19

The _nal selection may depend on such factors as distribution of volume fractions among ply
orientation\ on the magnitudes of the sti}nesses\ both in!plane and the L55 that resists torsion[

Figure 1 presents the design diagram of AS3:2490!5 system in "9c9
:234c34

:89c89
# laminate

con_guration[ The volume fraction c34 is selected as the variable on the horizontal axis\ while all
ply volume fractions are plotted on the left vertical axis and their change as a function of c34 is
indicated by the corresponding lines[ The range of the useful volume fractions is quite limited here[
The changes in the four sti}ness coe.cients are measured on the right vertical scale\ and indicated
by the superimposed lines[ Figure 2 shows analogous results\ for the "9c9

:259c59
:89c89

# laminate
whose tabulated results are given above[ The c59 volume fraction of the pairs of 259 plies is used
as a variable on the horizontal axis\ and the two vertical axes serve the same purpose as in Fig[ 1[
The range of useful ply volume fractions is much wider for this laminate[
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Fig[ 1[ Design diagram for a "9c9
:34c34

:89c89
#\ AS3:2490!5 laminate\ indicating ply volume fractions and magnitudes of

in!plane sti}ness coe.cients as functions of the volume fraction c34 of the 234> plies[ The 9> _bers and the x0!axis of
the laminate are parallel to the X2 or z!axis of the cylinder[

Fig[ 2[ Design diagram for a "9c9
:59c59

:89c89
#\ AS3:2490!5 laminate\ indicating ply volume fractions and magnitudes of

in!plane sti}ness coe.cients as functions of the volume fraction c59 of the 259> plies[ The 9> _bers and the x0!axis of
the laminate are parallel to the X2 or z!axis of the cylinder[
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Fig[ 3[ Axial and transverse stresses in the plies of a 099 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed
ends\ in the local xaxb!coordinates of each ply[ External pressure pb � 14 MPa[ External diameter 09 m\ wall thickness
9[14 m[

6[ Applications

The local _elds caused in the layers by the external pressure pb � 14 MPa\ acting alone on a
closed!end cylinder\ were evaluated for a 099 layer "9:259:891#s laminate made of the AS3:2490!
5 composite systems[ This layup corresponds to the choice of c59 � 9[3 in Fig[ 2[ The cylinder
dimensions were selected such that the axial normal stresses in the _ber direction in each layer was
equal to about 699 MPa at 14 MPa external pressure\ or at the depth of 1499 m[ Figure 3 shows
the ply stresses in the local coordinates of each ply[ As expected\ both the axial and transverse
local normal stresses are nearly uniform through the wall thickness[ Figures 4 and 5 show the same
ply stresses replotted in the global ruz coordinates of the cylinder "Fig[ 0#[ Due to the dissimilar
ply orientation\ these stresses show considerable variation from ply to ply[

Another result of interest is the distribution of ply stresses caused by a uniform change in
temperature of the structure[ The cylinder dimensions\ laminate layup and material system are the
same as those in Figs 2Ð4[ For the DT � 0>C\ the largest stress is the hoop stress suu � 9[51 MPa
in the 89> plies "Fig[ 6# with the _bers oriented in the u!direction[ The normal stresses in the z!
direction of the cylinder axis were one order of magnitude smaller[ This indicates that the thermal
stresses encountered in normal operations are likely to be small[ However\ more signi_cant thermal
stresses would be caused if the entire cylinder was cooled uniformly from a curing temperature of
019Ð064>C[ This can be the case in manufacture of relatively small test specimens[

Finally\ the stress distributions due to uniform eigenstrains in layers are also obtained[ The
purpose here is to examine the self!stress caused by a uniform eigenstrain in any particular layer
and also its in~uence on other layers[ This is better demonstrated by considering the same cylinder
described earlier in this section but with only ten layers of "9:259:891#s layup and equal thickness[
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Fig[ 4[ The suu hoop stresses in the plies of a 099 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\
in the global coordinates of Fig[ 0[ External pressure pb � 14 MPa[ External diameter 09 m\ wall thickness 9[14 m[

Fig[ 5[ The szz axial stresses in the plies of a 099 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ External pressure pb � 14 MPa[ External diameter 09 m\ wall thickness 9[14 m[

An eigenstrain component mj
uu � 0×09−5 or mj

zz � 0×09−5 is applied in one layer at a time and
the stresses in layers are evaluated each time from eqns "18#\ "21# and "50#[

Figures 7Ð09 show the direct e}ect on hoop stresses in plies by hoop eigenstrain component muu

in the 9 "layer 0#\ 59 "layer 1# and 89 "layer 3# degree layers[ In all the cases\ the self!stress is
compressive while the residual stresses on other layers are tensile and of comparatively lesser
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Fig[ 6[ The suu hoop stresses in the plies of a 099 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\
in the global coordinates of Fig[ 0[ Uniform change in temperature DT � 0>C[ Zero external pressure[ External diameter
09 m\ wall thickness 9[14 m[

Fig[ 7[ The suu hoop stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ Uniform eigenstrain m"0#

uu � 0×09−5\ in 9> layer "layer 0#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

magnitude than the self!stress[ The magnitude of the compressive self stress is higher in 89> layer
compared to 59> layer\ which in turn\ is higher than that in the 9> layer because the hoop sti}ness
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Fig[ 8[ The suu hoop stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ Uniform eigenstrain m"1#

uu � 0×09−5\ in 59> layer "layer 1#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

Fig[ 09[ The suu hoop stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\
in the global coordinates of Fig[ 0[ Uniform eigenstrain m"3#

uu � 0×09−5\ in 89> layer "layer 3#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

in these layers decreases in that order[ The cross e}ect of hoop eigenstrain on axial stresses in
layers is negligible[

The axial residual stress distributions due to axial eigenstrains in the 9\ 59 and 89> layers are
shown in Figs 00Ð02[ Again\ in all the cases\ the self stresses are compressive and the residual
stresses are tensile[ Appreciable tensile residual stress are caused only in the sti}er 9> layers[ The
cross e}ects due to axial eigenstrain were also found to be negligible[
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Fig[ 00[ The szz axial stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ Uniform eigenstrain m"0#

zz � 0×09−5\ in 9> layer "layer 0#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

Fig[ 01[ The szz axial stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ Uniform eigenstrain m"1#

zz � 0×09−5\ in 59> layer "layer 1#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

7[ Closure

The results derived here provide\ in part\ a theoretical foundation for the fabrication process
analysis of the cylindrical laminate that is presented in the sequel[ Also\ they show a simple
procedure for selection of a laminate layup that distributes equally among the plies the stresses
caused by the hydrostatic pressure[ Use of other layups is of course possible\ but leads to ine.cient
use of the composite material[
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Fig[ 02[ The szz axial stresses in the plies of a 09 layer "9:259:891#s\ AS3:2490!5 composite cylinder with closed ends\ in
the global coordinates of Fig[ 0[ Uniform eigenstrain m"3#

zz � 0×09−5\ in 89> layer "layer 3#[ Zero external pressure[
External diameter 09 m\ wall thickness 9[14 m[

Moreover\ the stresses generated by a uniform change in temperature of the laminate are shown
to be small at ordinary operating conditions[ However\ they can become signi_cant under the large
changes applied during cooling from the curing temperature of 019Ð064>C[ Of course\ such
heating:cooling cycles can be applied only to relatively small _ber!wound cylindrical test specimens\
whereas large structures produced by _ber placement techniques may see only local temperature
changes causing much less signi_cant residual thermal stresses^ this is discussed in Part II[ Finally\
the e}ect of uniform layer eigenstrain components on the residual stresses is examined in a 09!ply
cylinder[ The direct e}ect of both the hoop and axial components on the corresponding stress
components is found to be the most signi_cant[ However\ equilibrium of axial tractions causes
appreciable axial normal stresses in the sti} 9> plies[ Cross!e}ects are not signi_cant[
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Appendix

The coe.cient matrices kj\ qj\ sj and wj appearing in eqns "17# and "18# are listed here[ We start
with de_nitions of various constants that simplify the expressions

Dj
0 � Lj

ru¦kjL
j
rr D j

1 � Lj
ru−kjL

j
rr D j

2 � Lj
rz−"Lj

rr¦Lj
ru#C j

E j
0 � Lj

uu¦kjL
j
ru E j

1 � Lj
uu−kjL

j
ru E j

2 � Lj
uz−"Lj

ru¦Lj
uu#C j
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F j
0 � Lj

uz¦kjL
j
rz F j

1 � Lj
uz−kjL

j
rz F j

2 � Lj
zz−"Lj

rz¦Lj
uz#C j "66#

where the coe.cients of Lj are de_ned in "3#Ð"6#\ Cj is given in "02# and as in "00#\ k1
j � Lj

uu:L
j
rr[

Evaluation of layer stress averages in "15# involves the integrals

I j
0 �

0
bj−aj g

bj

aj

jkj−0
j drj �

0−ckj
j

kj"0−cj#
"67#

I j
1 �

0
bj−aj g

bj

aj

j−kj−0
j drj �

c−kj
j −0

kj"0−cj#
"68#

I j
2 �

0
bj−aj g

bj

aj

j−1
j drj �

0
cj

"79#

I j
3 �

0
bj−aj g

bj

aj

log"jjbj# drj �
0

"0−cj#
ð"log bj−0#−cj"log aj−0#Ł "70#

J j
0 �

0
Vj gVj

jkj−0
j dVj � 1

0−ckj¦0
j

"0¦kj#"0−c1
j #

"71#

J j
1 �

0
Vj gVj

j−kj−0
j dVj � 1

0−c−kj¦0
j

"0−kj#"0−c1
j #

"72#

J j
2 �

0
Vj gVj

j−1
j dVj � −1

log cj

"0−c1
j #

"73#

J j
3 �

0
Vj gVj

log"jjbj# dVj �
0

1"0−c1
j #

ð"1 log bj−0#−c1
j "1 log aj−0#Ł "74#

Next\ we recall the constants Uj\ Bj\ Cj\ Ej and Fj de_ned with "02# and "03#\ and denote

U j
0 � U j"ckj¦0

j −0# U j
1 � U j"c1kj

j −ckj¦0
j #

B j
0 � B j"ckj¦0

j −0# B j
1 � B j"c1kj

j −ckj¦0
j #

C j
0 � C j"ckj¦0

j −0# C j
1 � C j"c1kj

j −ckj¦0
j #

E j
0 �

E j

1
ðc1

j "1 log aj−0#−"1 log bj−0#Ł

E j
1 �

E j

1
ð"1 log bj−0#−"1 log aj−0#Ł

F j
0 �

F j

1
ðc1

j "1 log aj−0#−"1 log bj−0#Ł
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F j
1 �

F j

1
ð"1 log bj−0#−"1 log aj−0#Ł

dj �
0

"0−c1kj
j #

"75#

This leads us to write the coe.cients of kj in the following form[ For kj � 0

kj
00 � "Dj

0c
1kj
j −D j

1#dj kj
01 �"Dj

1−Dj
0#ckj

j dj

kj
02 � aj ð"C j

0D
j
0c

kj−0
0 ¦C j

1D
j
1c

−kj−0
j #dj−Dj

2Ł

kj
10 � kj

01 k1
11 �"Dj

0−Dj
1c

1kj
j #dj

k12 � −bj ð"C j
0D

j
0¦C j

1D
j
1#dj−Dj

2Ł

k20 �
0
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"F j
1J

j
1−Fj

0J
j
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j Vjdj

k21 �
0
bj

"F j
0J

j
0−Fj

1J
j
1c

1kj
j #Vjdj

k22 � −ð"C j
0F

j
0J

j
0¦C j

1F
j
1J

j
1#dj−F j

2ŁVj "76#

and for kj � 0\

kj
00 � "Dj

0c
1
j −D j

1#dj kj
01 �"Dj

1−Dj
0#cjdj

kj
02 � aj ð"F j

0D
j
0¦F j

1D
j
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01 kj
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j #dj
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iD

j
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1D
j
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1
j #dj−Fj
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0
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"F j
1J

j
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j Vjdj
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0
bj
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1J
j
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1
j #Vjdj
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0F

j
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j
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j
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1
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3J
j
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The coe.cients of qj are written for kj � 0 as

qj
00 � −aj ð"U j

0D
j
0c

kj−0
j ¦U j

1D
j
1c

−kj−0
j #dj¦CjŁ

qj
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0D
j
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j
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02 � −kj
02

qj
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0D
j
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j
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qj
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j
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qj
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0¦U j

1F
j
1J

j
1#dj−DjŁVj

qj
21 � ð"B j

0F
j
0J

j
0¦B j

1F
j
1J

j
1#dj¦DjŁVj qj

22 � −kj
22 "78#

and for kj � 0\ the coe.cients become
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Finally\ the coe.cients of sj and wj are also evaluated for both cases of kj[ Thus for kj � 0
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and for kj � 0
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